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1. INTRODUCTION

The purpose of this paper is to investigate and recommend suitable

types of measurements on the lunar surface which will result in the

establishment of a selenodetic control network. In this paper, we will

define a selenocentric celestial coordinate system, in which we may

make measurements, and in turn determine an astronomic position on

the lunar surface. Combining this astronomic position with a knowledge

of the deflection of the vertical at this position, we could then determine

the coordinate of this position in a selenographic system.

Therefore this paper will be divided into two primary areas which

are:

(1) Establishment of a selenocentric celestial coordinate system

and measurements in that system from the lunar surface.

(2) Determination of the deflections of the vertical on the lunar

surface.
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2. ESTABLISHMENT OF AND MEASUREMENTS IN THE LUNAR

ASTRONOMICAL COORDINATE SYSTEMS

On the earth most of the geodetic astronomic calculations are made

using a geoequatorial system where the star coordinates are right ascen-

sion and declination. There are a great number of catalogs, maps and

almanacs giving the coordinates of the stars and other celestial bodies

in this system. If the coordinates in this system could be easily trans-

formed to a lunar equatorial system, all the methods of geodetic astronomy

could be employed on the moon for selenodetic purposes. In this section

we will show such a transformation complete with error analysis, while

also discussing such related factors as time, location of lunar pole stars

and observations in the horizon system.

We will also show some methods which may be used on the lunar

surface to determine astronomic position. These methods will be dis-

cussed in relation to the instrument requirements, and accuracy of the

system as a whole. Included among these methods is an inertial system,

which is presently installed on the lunar module, and which in itself can

establish a position on the lunar surface.

The methods and instruments presented are not assumed to be a

complete listing, but are based on practical factors which may obviously

limit other methods because of physical size or complexity of equipment,

time required to achieve an astronomic position, or excessive burden

being placed on the astronauts, either during training or during the

operation itself. In this light we would most like to find a method which

is as conservative of the astronauts time as possible (in both training and

employment), achieves satisfactory results, and does not involve undue

calculations or recording procedures. In conjunction, we wish the

instruments involved in this method to be simple, portable, and of

course accurate.
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2.1 Lunar Astronomy

Kolaczek [14] defines a selenoequatorial coordinate system (lunar

right ascension system) where the axis of rotation of the moon defines

the celestial pole, which is the basic direction, and the celestial

equator, which is a plane perpendicular to the rotation axis, containing

the center. The latter is defined as the basic plane. This system is

affected by precession and nutation (physical libration) of the lunar axis

of rotation. The selenoequatorial system is analogous to the geoequatorial

system on earth, but the selenoequatorial coordinates of the stars change

their values faster than the geoequatorial coordinates due to the lunar

precession being 1,360 times faster than the earth's. The selenoequatorial

coordinates are:

. - Lunar right ascension measured on the lunar celestial

equator from its ascending node on the ecliptic. It is

measured to the east from 00 to 3600.

d - Lunar declination which is the angular distance from the

lunar celestial equator. It is measured from 00 to 900,

positive in the northern celestial hemisphere, and negative

in the southern.

Now we will take a coordinate system with known coordinates and

transform these coordinates into the selenoequatorial coordinate system.

The translation of any coordinate system from one point in space to

another changes the values of the spherical coordinates of fixed points

on the celestial sphere. This change is caused by the parallax or the

translation of the origin of a coordinate system and the aberration caused

by the different motion of this newly translated system. The translation

of mean earth oriented coordinates into mean lunar oriented coordinates

does not require consideration of parallax if we consider only the coordi-

nates of stars, as we may omit the parallax of the earth-moon distance,

due to the great distance of the stars, as compared to the earth-moon

distance. The transformlation of the apparent coordinates however requires

consideration of the influence of the moon's aberrations.
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2.1.1 Transformation of Mean Geoequatorial into Mean Selenoequatorial

Coordinates

The transformation of mean geoequatorial into mean selenoequatorial

coordinates can be performed in two steps [14]. First the mean geoequa-

torial coordinates c, 6 are transformed into the mean ecliptic coordinates

X, by the well known formulas:

sine = cosC sin 6 - sinC cos 6 sin

cosp cos X = cos 6 cos a

cos# sinX = sin E sin + cos E cos 5 sina

where E the obliquity of the ecliptic is

C = 230.452294 - 00.0130125 T - 00.00000164 T + 00.000000503 T

where T denotes the time measured in Julian centuries of 36,525 ephemeris

days from the epoch 1900 January 0.5ET = J.D. 2415020.0.

Next the transformation formulas of mean ecliptic coordinates into mean

selenoequatorial coordinates.

sin do = sing cos I + cosf sinI sin ( X - 0)

cos d sinc = sin sinI - cos cos I sin (X - ) 2.1

cosdm cosa 9 = -cosB cos(X- C)

where I is inclination of the lunar equator to the ecliptic

I = 10 32' 01"

0 The mean longitude of the ascending node of the lunar orbit on

the ecliptic is

0= 2590. 18305556 - 1934 0.14200833T + 00.002078 ? + 00.000002T 3

where T is defined as above.

2.1.2 Transformation of Mean Selenoequatorial Into Apparent Selenoequatorial

Coordinates

The transformation of mean into apparent coordinates is given in

a form [14] similar to that used for the earth's equatorial coordinates

SSAPP = a x A a + B bi + C1c + D d + a ua

d sapp = da + Al ai + B1 bi + C1 ci + Dl di + Ta jd
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Similarly to Bessel's equations on the earth, A1 and B1 are the effects

of precession and nutation to date from the determination of the mean

coordinates. The C1 and D terms are the effect of lunar annual abberation.

Ther, ( & ) terms are the corrections for proper motion. The

al ,bl,c,dl,al,bi ,ci,di coefficients are the lunar Besselian star constants.

Specifically:

Ai = -(Pet + a)sinI

Bx = P

C1 = - K sin(I4 - Q+ 1800) cosI

Di = - K cos(L - 0 + 1800)

where:

PO - Daily motion of the ascending node

of the moon's orbit on the ecliptic

( = - 00. 0529539222)

t Number of ephermeris days from the

epoch to of the mean coordinates a , d2

I - Inclination of the moon's equator to the

ecliptic ( =10 32' 01")

p, 0 - Physical librations in inclination and in

ascending node respectively (see Appendix #3)

K, k - Constant of the earth's and of the lunar

aberration respectively

K = k(1 - VL cos(L, - 11)/Ve)

(k = 20".4958)

L,l, Lap - Longitude of the sun, the moon and the

moon's apex in the motion around the

sun respectively

I.p = Ls - 900 + A A
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AA = tanV1 Vsin ( L - 11)
Ve - Vi cos ( L - 11 )

V. ,V Velocity of the earth's and the moon's

orbital motion, respectively

(Ve = 29.8 kln/sec

V1 = 1.02 km/sec)

The lunar Besselian star constants are:

al = (cot I - sin a a tan dm )

al =- cos a

bi = cos !a tan dm

b = - sin a

cl = - cos a. sec da

cl = s i n U . sin dm + tan I cos dm

di = sin am sec dm

di = cos a sin da

The proper motion will take on similar values to those computed

on the earth:

Ta = t

J, . = The components of proper motion of the star

2.1.3 Lunar Horizon System

Measurements on the lunar surface will most likely be made in the

horizon system. In the moon's horizon system, altitude aih and azimuth Alh

are defined in the same way as that of the earth's horizon system. The

transformation between the lunar horizon system and the lunar selenoequatorial

system similar to that given by Mueller [16] is as follows:

cos d sin ( LHAO- X- a ) = - sin Zi sin Alh

sin d = cos Zi sinI + sin ZI cos A cos 4  2.

cos d cos (LHAn -X- a ) = cos Zi cos 4~ - sin Zi cosAlh sin

6



where LHA - The lunar hour angle of the node measured from the

reference median

- The lunar astronomical latitude

X - The lunar astronomical longitude

Z1 = 90 - as,

The above equations can be derived with the use of Figure 1 below:

NCP

h = LHA -. -

Z z = 90-ain star

Figure 1. - The Astronomical Triangle

2.2 Lunar Time

As we have defined the lunar right ascension system in terms of

ascending node, it would only be appropriate, that we define the lunar time

system in terms of the draconic month. The draconic month is defined by

two successive passages of the moon through the same node of its orbit.

The draconic month is equal to 27.212220 mean solar days.

The expression of. selenographic longitude in terms of time would be

as follows:

1 month = 27.212220 mean solar days = 3600

1 day = .9070740 mean solar days = 120

1 hour = .03779475 mean solar days = 30'

1 minute = .0006299125 mean solar days = 30"

1 second = .0000104985 mean solar days = 0".5
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Figure 2 below shows the relationship in draconic times.

LADT
FD LMD

DT
MDT

local ean ean
astron ic meridian

eq.N

LMDT Lunar mean draconic time

LADT Lunar apparent draconic time
RMDT Reference mean draconic time
RADT Reference apparent draconic time

eq. N Equation of the node

Figure 2. - Draconic Time System

From Figure 2 it is evident that:

LMDT + eq.N = LADT

and LMDT - RMDT = X

where - The reduced astronomic longitude with the positive

sign to the east

and eq. N The lunar equation of the node which is due to nutation

(physical libration in longitude T and in node a) (see

Appendix C).
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From the actual rotation angles of the moon, we find that eq. N = - a.

We will assume in this section that the meridian is not affected by

polar motion and that the rotation of the moon is free from short periodic

irregularities.

The hour angle of the node is equal to the lunar right ascension of

an object at the instant of its upper transit over the meridian from

which the hour angle is reckoned. Therefore, draconic time can be

determined by observing transits of stars.

The lunar time intervals are almost equal to the terrestrial time

intervals of the same name (91% of the terrestrial values), which is

still advantageous from the psychological point of view because a change

to such a time system would be almost unnoticeable to man. The

meridian to use for a change of dates could be the 1800 meridian.

2.3 Lunar Pole Stars

As stated by Gurevich [5] the lunar poles describe circles in the

celestial sphere with an angular diameter of 30. - This circle is centered

on the ecliptic pole, with a period of 18.6 years. Therefore, first

certain stars, then others, will be most suited for use as pole stars.

Tables of altitudes and azimuths must be compiled for the stars closest

to the poles at a particular time. The mean north pole

of the moon described in the earth right ascension system would be

approximately, a = 18h, 6= 66033' . We see from the FK4 catalogue

that the following stars from Table 1 are near the north pole.
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Table 1. Lunar North Pole Stars

Catalog Number Magnitude 6o

659 5.21 17
h 32a 680 09'

701 6.00 18h 36m  
6 5 0 2 7 1

664 4.87 17' 37m 680 46'

685 5.03 18h 13m 640 23'

and approximately a = 6h , 6 = - 660 33' for the south pole in Table 2

from the Boss catalogue.

Table 2. Lunar South Pole Stars

Catalog Number Magnitude c 6

6927 5.3 5 h 32m - 640 15'

7246 4.5 5 h 44m - 650 45'

7384 5.2 5 h 49M - 660 55'

7813 5.8 6 h 06m - 660 02'

7946 4.9 6
h 11 - 650 35'

With a knowledge of the relationship of the position of the lunar pole to

those stars the astronauts can make a rough north alignment with a probable

accuracy of less than 1 minute while using only a gun sight type sighting

device.
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2.4 Measurements on the Lunar Surface

Presented here are four basic types of measurements which can be

employed on the lunar surface to determine astronomic position.

One method is the measurement of altitudes or zenith angles of at least

two stars separated in azimuth, combined with the known celestial coordinates

of a star and a knowledge of time. This is a method which can be employed

with an ordinary sextant or theodolite.

A second method is by determination of a relative bearing and altitude of

a star combined with information from inertial and gravitational sensors, which

is the method used by the Alignment Optical Telescope (AOT) on the lunar

module.

A third method is by measurement of relative azimuth angles between at

least three known stars. This technique can be used with an ordinary theodolite,

but also lends itself well to the use of an automatic instrument.

A fourth method is by star photography, which can use either the first

or third, or other methods to determine position. Here we can use a photo

theodolite, or other metric camera.

In the following section these four methods will be discussed in relation

to their ease of employment on the lunar surface, instrumental adaptability

and accuracy, and other pertinent facts.

2.4.1 Method 1: Measurements of Altitudes

The measurement of altitudes or zenith angles in order to determine

astronomical positions can be accomplished by the use of a sextant or

theodolite. The obvious advantage of this method lies in the fact that both

sextants and theodolites are comparatively light equipment, which could

feasibly be included on a lunar mission. The sextant is a familiar

instrument to the astronauts, as they already have been trained in its use.

Although, the training required to allow the astronauts to effectively use a

theodolite could be accomplished in a short period of time. The big
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advantage in using this equipment is that astronomical positions can be taken

at several points.

As stated in the Geonautics study [7], it is not likely though that a

theodolite would be practicable for the initial missions. The time and effort

required to set up and measure is far out of proportion to the many other

tasks required of the astronauts. It would also be necessary to adapt the

fine pointing and adjusting screws for use with the pressure gloves the

operator must wear. In addition, precise sightings through the helmet

face plate would be most difficult.

A hand held sextant may be used to determine a position on the lunar

surface. The altitude of a star is read directly from the scale. With the

aid of sub-divisions and a vernier, altitudes can be read with a first-class

instrument to one-tenth of a minute of arc.

The problem which arises with the use of a simple sextant is in the

determination of the lunar horizon. In order to eliminate this problem,

we can consider the use of an artificial horizon or a bubble sextant, so

that we then need only define the local vertical instead of the horizon.

The artificial horizon is a rectangular shallow basin of mercury. The

observer places himself so.that he can see the image of the body, whose

altitude is to be measured, reflected in the mercury. He points the

telescope toward the artificial horizon so that he uses a second image of

the heavenly body in place of the horizon. By moving the index arm, the

two images. are made to coincide. The circle reading is twice the altitude

which thereby reduces the precision of the instrument to 12 seconds of arc.

A bubble sextant (bubble octant) [17] contains its own artificial horizon.

In measuring altitudes, the image of the celestial body is brought into

coincidence with the image of a circular level bubble which forms the

artificial horizon. The altitude is then read on a micrometer drum. The

fine drum is divided into 2 minute intervals which can be interpolated to

the nearest 1 minute. In a bubble sextant such as the Bendix "Pioneer",

provision is made to record a series of altitudes automatically. An

average reading can be determined from these readings.

12



These instruments are not capable of first order geodetic accuracy.

The positional error can be a maximum of 50 meters from the

sextant with the artificial horizon, and 600 meters for the bubble sextant.

This, of course, does not take into account, sextant internal errors,

bubble errors, and errors in the star tables. In addition, the recording

of each measurement using the common sextant will burden the astronauts.

With both instruments each star must be identified by the astronauts,

leading to further possibilities of error. Time recording must also be

done manually.

Using this method (see Figure 1) we can find azimuth from the

formula as given by Mueller [16]

- cos d sin hsin A =
sin Z

where h = LHAa-X -

We can find the latitude from the basic formula as given by Mueller [16]

cos Z = sind sin4 + cosd cosh cos 4

and we can determine longitude from the formula as given by Mueller [16]

cos Z - sin d sinP
cos h =

cos d cos P

2.4.2 Method 2: Measurement with the Alignment Optical Telescope

A relative bearing and altitude of a star can be determined by the

Alignment Optical Telescope (AOT) which is currently installed in the Lunar

Module (LM). An astronomic position on the lunar surface can be established

by the use of this instrument in conjunction with the Inertial Measurement

Unit (IMU) and the Primary Guidance Navigation System (PGNCS) accel-

erometers. The great advantage of this method lies in the fact that no

additional equipment or training of the astronauts is necessary to obtain an
astronomical postion. An apparent disadvantage is the fact that only one
astronomical position can be determined during each landing due to the
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fact that the equipment is fixed in the lunar module which in turn is fixed

on the lunar surface.

The AOT as described in the Grumman manual [4] is a unity power

periscope type device with a 600 conical field of view. Its primary pur-

pose is to provide a method of establishing an inertial reference with

respect to celestial bodies for inflight and lunar surface operations. It

is operated manually by the astronauts and is mounted on the PGNCS

navigation base to establish a mechanical alignment and common reference

with the IMU. The AOT has a moveable shaft axis which is parallel to

the LM "X" axis and a Line of Sight (LOS) axis which is the center of

field of view and fixed at 450 from the LM + "X" axis.

The AOT LOS is fixed in elevation and moveable in azimuth to six

detent positions. These detent positions are located at 600 and are

selected manually by turning a detent selector knob on the AOT. Three

of the positions can be used operationally for star sightings and are called

forward, left, and right (see Figure 3). The forward, or zero detent

position places the LOS in the x,z plane looking forward and up. The

right, or 4600 position places the LOS 600 to the right of the x,z plane and

the left or -600 position places the LOS 600 to the left of the x,z plane.

Each of these positions maintain the LOS at 450 from the LM + X axis.

The remaining three detent positions are storage positions with the

position 1800 from the forward position being the normal storage position.

The reticle control makes it possible for manual rotation of the reticle

for use in lunar surface alignments. The AOT reticle pattern consists of

cross hairs and superimposed archimedes spiral (see Figure 4).

The vertical cross hair is an orientation line designated the "Y" line

and is parallel to the LM X axis when the reticle is at the 00 reference

position. The horizontal cross hair is an auxiliary line designated the "X"

line and is perpendicular to the orientation line. A one turn spiral is

superimposed from the center of the field of view to the top of the vertical

14
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FIGURE 3. - AOT Line of Sight Positions
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cross hair. The reticle is edge illuminated.

A counter located on the left side of the AOT, displays an angular

readout of reticle rotation. The counter reads in degrees to within ±0.02

degrees or ±72 seconds. Interpolation is possible to within ±0.01 degrees.

On the lunar surface, the selected star can be sighted in either the

AOT left, right or forward positions. The astronaut using the manual drive

knob, adjusts the reticle to superimpose the orientation line on the target

star. This reticle angle displayed on the AOT counter is then manually

inserted into the Lunar Module Guidance Computer (LGC) via the Display

Console (DSKY). This provides the computer with the star orientation

angle (shaft angle). The astronaut then continues to rotate the reticle until

a point on the spiral is superimposed on the target star. This second

angular readout is then entered into the LGC via the DSKY. The AOT

detent position and the star code number are also inserted into the LGC

via the DSKY. The LGC can now calculate the angular displacement of the

star from the center of the field of view by computing the difference between

the two counter readings. Due to the characteristics of the reticle spiral,

this Aangle is proportional to the distance of the star from the center of

the field of view. Using this Aangle and the proportionality equation, the

computer is then able to calculate the trunnion angle. During the lunar

surface phase of the lunar landing mission, the Mission Control. Center

and the LGC use the unit gravity vector as measured by the LM PGNCS

accelerometers to align the LM platform and to estimate the latitude and

longitude of the LM on the lunar surface.

The AOT star alignment establishes an inertial reference by employing

the following formulas:

SA = X S2) X S1 [A] [MCI]

S 1 X S Z] McI

17



Where S1 and S2 are known unit vectors of stars in moon centered

inertial space and MCI is the unknown coordinates of the spacecraft with

respect to the moon centered inertial system.

Sx X
1o = M X S2 Mx Sim Y [B] [SM]

Sim X S2 ZSm

Where S1M and SaM are measured unit vectors of stars in stable

member space of the stars, and SM is the assumed stable member

coordinates referenced to the moon centered inertial coordinate system.

[SA] = [SB]

[A] [MC1J = [B] [SM]

[SM] = [B]- [A] [MCI]

[' REFSMMAT] = [B]-1 [A]

Therefore: MCI = [REFSMMAT] [SM]

Upon comparison with the gravity vector and an estimate of the lunar

radius at the point, a position on the lunar surface can then be estimated.

Considering only the precision of the counter reader (with interpolation)

we see that the positional accuracy may be as poor as 152 meters

or 498 feet. If we considered the errors in the determination of the unit

gravity vector, and the errors in the star tables, we would obviously find

that this system is not adequate for determining accurate positions on the

lunar surface. Considering a minimum standard error of 20".8, we will

eliminate this system from consideration for geodetic purposes.

18



2.4.3 Method 3: Measurement of Relative Azimuth Angles

Method three involves the simultaneous determination of longitude,

latitude, and azimuth based on the motion of stars in azimuth. An

ordinary theodolite can, of course be used, but it again suffers the

drawbacks mentioned in Method 1.

This method though, lends itself to a concept which can allow

automatic determination of astronomic position and azimuth. An

"Electronic Zenith Camera" (EZC) is currently under development by

the Control Data Corporation of Minneapolis, Minnesota. It is described

by Carroll as a portable sensor-computer combination which performs

both detection of stars and calculation of astronomic position [1] [2].

Stars are detected by their transits across a fan of radial slits placed

at the focal surface of a vertically oriented optical system.

The principal advantages of this system is that once set up, the

system can determine its astronomical position on the lunar surface

without further attention from the astronauts. The system itself can

be easily set up on the lunmar surface. This set up includes approximate

north orientation, and approximate levelling. If necessary, the system

could be left to operate after the astronauts have left the lunar surface.

Radio transmission of current updated positions could be relayed to

earth if necessary.

It is considered that astronomical longitude and latitude can be

determined to within 0.3 (lo) seconds and azimuth to within 3 (lT)

seconds (not considering star catalogue errors) which is certainly

acceptable accuracy at this time. No instrument of this type has

currently been manufactured, but all advance planning has been completed

and the necessary technical skill is available to produce this instrument.

The EZC can be broken down into the system block diagram as seen

in Figure 5.

19



/
Transmitter

SENSOR CONTROL UNIT

I I I-- Rbticle I . .

I e Clock o
II ( Dis

I Detector

L elProcessor ol

Rbference

Reversal Bearing Powe

Reversal Moto

Figure 5. - EZC Block Diagram

We will examine each component starting with the sensor

(see Figure 6). The lens system is an f/3.3 system having a 3

centimeter aperture and a 10 centimeter focal length. The lens system has

a 16 degree total field of view (eight degrees maximum off-axis angle), and

can form an image of a point source restricted to a tangential dimension

no greater than 10 seconds of are but not restricted by the radial dimension.

It will be necessary to shield the lens from such bright bodies as the sun

and earth.

The reticle has 100 radial slits (at the focal point of the lens) about

1.4 centimeters long and 4.8 microns wide.
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Figure 6. - EZC Sensor Unit
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Directly behind the slit reticle is placed an end-window photomultiplier

tube which collects all light passing through the slits. The output of this

tube is amplified, filtered, and processed so that only the maximum

signal (peak pulse) will be recorded and timed. The time input can be

any commercially available temperature compensated crystal oscillator.

Looking at the control unit, (see Figure 7) we find that the heart of

the system is a miniature general purpose digital computer from which

the sensor is controlled, and from which the operator' receives status and

calculated information. Also included are a precision oscillator (crystal

oscillator), a power source, and the necessary interface electronics. The

level reference is a mercury pool autocollimator. Miniature electronic

autocollimators can reflect a beam off the surface of a completely enclosed

mercury pool (dust free surface), the surface of which is covered by a

silicone fluid which damps out ripples. If the unit is to function during

the lunar night, it will be necessary to heat the mercury pool, due to the

lunar temperature being below the freezing point of mercury.

The DC reversal motor is under command of the control unit. The

motor drives the instrument about the vertical axis against one of two

stops placed 1800 apart. The reversal bearing is composed of dissimilar

metals (brass and bronze) thereby eliminating the possibility of micro-

scopic welds, which would inhibit accuracy.

Prior to operation, the astronaut must level the instrument to within

30 seconds. Within this range the automatic level reference supplies

information to the computer so as to measure the angle between the

instrument vertical axis and the true local vertical. The astronaut must

also make an initial north (south) - alignment of the instrument. This

can be accomplished by using a gunsight mechanism on the equipment and

sighting with the aid of near polar stars such as previously described.

This will yield an initial approximation of north, with the exact azimuth

to be solved for.
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We are interested in detecting stars from + 1. to + 5.3 magnitude.

It has been determined that the best results are obtained with a star

transiting at least one slit each minute. In order to achieve this rate

on the lunar surface, we must either wait approximately 27 times longer

for a solution than we would on earth (approximately 27 hours) or have an

internal spinning reticle which would reduce the solution time but would

introduce additional errors into the system (approximately 1-arc second).

Star identification is based on an approximate knowledge of the

observer's position, and north alignment. The computer determines the

expected pattern of transit times from the stored star catalog. This

computed pattern and the measured time pattern are then superimposed,

and these target pairs which correspond closely and uniquely in magnitude

constitute tentative identifications. These are then used to adjust the

assumed position and azimuth and thereby to adjust slightly the computer

time pattern so as to obtain a better fit with the measured pattern. From

here the final solution sequence preceeds by solving a linearized version

of the following equation derived from equations 2.2:

cot(Ao + )sin(LHA -" -a )-sincos (LHAG -X -a )

+ tan di cos4 = 0

where

Ao - The azimuth of the Oth slit (dependent on north alignment)

, - The fixed angle between the Jth slit and the Oth

slit

LHA - Apparent lunar reference meridian hour angle of the node

(LADT)

X - Longitude

1 - Lunar right ascension of the i th star

<Q - Latitude

di - Lunar declination of the i th star
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This linearized version is then

0 = sin Aj cot Z d@ + cos@( tan - cosAj cot Z ) dh - dAo

where Z is the computed zenith distance

h = LHA - -a

A =Ao + f

and

cot Z = (sin.d sin@ + cos d cos h cos) sin A1
- cos d sin h

The measured quantities are azimuth and time. Latitude and longitude

of the station are assumed.

Since there are more measurements than unknowns, we may use a

least square solution, with a Kalman filtering technique [10] based on the

Newton-Raphson iteration formula, so that matrix inversions will not be

required. This iterative procedure is based on the following equation:

S aN XN + LN
XN+1 = XN[ 1C + aN CN aN]

where:
d 0

matrix XN = X1 L:Jdh Xo = 0

matrix aN = ia3 = ( sin A cot Zi - cos 4 (tan - cos Aj cotZ i ) - 1)
LN = cot(Ao + A) sin(LHA - X - ) -sinP cos (LHAC

- X- i ) + tan d, cos?
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CN aA aN CN
and matrix CNi = CN -

[1 + aN CM a]

where matrix Co = 3C3 = (A' )-

where the rows of A are the rows of al to as.

We can see that the incorporation of a new measurement does not

require a new matrix inversion. Only one inversion is required and that

is for Co which is only an inversion of a 3 x 3 matrix. After the first

five marks no old observation information need be saved. The values of

the elements of matrix C are indicative of the quality of the results.

Matrix C is the covariance matrix, but only under the assumption that

there are no systematic errors in the residual vector L . There are

systematic errors in the residual vector L , due to the timing error

(T libration ) and the errors in star right ascension and declinations.

In order to cancel alignment errors in the optical-reticle system and

normality errors between the instrument axis, the instrument is rotated

1800, and the astronomic position is again determined. The average of

these positions is then used. The level status of the reversal bearing

is also measured and it is applied as a final correction.

2.4.4 Method 4: Measurement with Photography

The determination of astronomical position by photography can be

accomplished with a photo-theodolite or other metric camera using methods

such as one or three. The drawbacks of a photo-theodolite are the same

as for an ordinary theodolite and thus would tend to make it impractical

for early missions.

As described in the Geonautics study [7], a metric camera could be

used as a zenith camera or otherwise fixed in elevation to photograph stars.
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Various sophisticated systems such as gravity-operated automatic leveling

devices with gimballed camera support, electronically operated automatic

leveling devices, gyroscopic devices, etc., could be considered to level the

camera. The simplest and most feasible device would seem to be the

conventional spirit bubbles. These bubbles could be placed on a camera

support such as a tripod, so that the camera, when placed on the support,

could be theoretically leveled within the range of two orthogonally placed

precise level vials inside the camera body. These precise levels can be

photographed during each exposure, thus providing a permanent record of

the level reference. Drawbacks in this system tend to lie in the fact that

the bubbles are affected by differential heating from external light, so that

they must be protected both from radiant heat and from light. The bubble,

of the sensitivity required in the camera, would be termed a "slow" bubble

in a conventional surveying instrument. It would be even slower on the

lunar surface due to the moon's smaller gravitational force.

This method provides a permanent and true record of field data as

film can be removed from camera and returned to earth. Most advantageous

is the fact that a great number of measurements can be taken in a minimum

amount of time after the initial set up. There is a requirement for extra

equipment such as a tripod, but it could be retractable and made of

aluminum or some similar material Timing of each photo would also be

required, but this could be done by an internal clock, which would furnish

the time to be included in the edge data.

2.5 Error Analysis

Let us first consider the errors which contribute to the lunar apparent

selenoequatorial coordinates. In the transformation of the mean geoequatorial

coordinates to the mean ecliptic coordinates, the relatively small errors in

, 6 , and E can be considered negligible. Therefore, /3 and X can be

considered errorless. In the transformation of the mean ecliptic coordinates
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to the mean selenoequatorial coordinates we consider that the error in f

is negligible, but there is definitely an error in inclination (I). Let us

make a conservative estimate of 20" for this error. Differentiating

equations (2.1) we see that the results are similar to that given by

Mueller [16]

dd. = cosC m sinI d(X - ) + (sec dmseccos I - tand tan)

d + sina dI

but d(X -) = 0

dg = 0

therefore dda = sins a dI and therefore the maximum value of

dda = sina d = 20". 0 sina m

and d aa = (sec dm cos I - sec dm tandm sing) d (X - r )

- cosa . sec sec dm sin IdP - tan d cos a m dI

but again d ( - h) = 0

dP 0

therefore da = -tanda cosa a dl - 20".0 tan dm cos

Considering the transformation of mean into apparent selenoequatorial

coordinates, we will use the following equations:

6 a AL dcr+ A A1 a, a Al a,

da , = da + 8 dI + dd

A al a 0 B6 Bb B b  d + db d+ da a dI+ dp+ + dd,

SI (2.3)
+ da m + dI + ddae () I 6da

a Di di 0 a D, d, iD dl+ da + dl d d
at28 d d
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and a similar expression for dd.pp, considering in both cases a

negligible error in proper motion.

In the following differential expressions we will assume:

cosI 1

d, = Limited to 450

p = 1'

a . = 1'

The differential quantities will be assigned the following conservative

values:

d = 10" = .000050 radians

dp = 10" = .000050 radians (estimate from [13])

dI = 20" = .000097 radians

dd, = 20" = .000097 radians

dr = 15" = .000014 radians (estimate)

do m = 20" = .000097 radians

A a1 = (Pdt + a) (cosl - sinI sina tand.)

Aa1  do = (cos I - sin I sina , tan dm ) da

= (1- .02676 sinY, tand,)do = do

= 10". 0

SAl al (
dl = (Pt + o (cosI sinU m tan dm - sinI)dI

= (-.0015059) (-. 97324)dI

= 0".0

6Al a dd. = (Pt + ) (sinI sina sec 2 d.)dd.a d, se d)dd

= (-.0015059) (. 05352)ddm

= 0".0
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)da = (Pt +a) (-sinI cosa tandm) dct

= (-.0015059) (-.02676) dc

= 0".0

Bib = p cosa , tandm

6B 1 bi 0
dp = cosa m tandm dp

= 10".0 cos aq tandm

SB bl dI = 0".0

B bd ddm = pcosa sec2 dm dd6 d,
= .00058,ddm

= 0". 0

0- d m = Psin a. tan d. dQ

= -(.00029) da.

= 0".0

Ci c = K sin( Ip - 0 + 1800) cos I cosa msec d dl

C c dl =-K sin (1,p - 0+ 1800) sinI cosa secd. dI

= (.000097)(1)(.02676)(1) (1.4) dI

= 0".0

a C ddm = K sin (Ip, - 0 + 1800) cosI tand. secd cosO a dd.

= (.000097) (1) (.02676) (1) (1) (1.4) dl

= 0".0
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c dX a = Ksin(Lp - 0+ 1800) C = SI sina . secd. do!

= (.00097) (1) (.02676) (1) (1.4)d!

= 0" .0

D di = K cos (I, - + 1800) sina secdz

a Di dl d = 0".dI = 0".0
bI

1d dd = K cos (Lap - n + 1800) sina tand a sec d dd.

= (.000097) (1) (1) (1) (1.4) ddm

= 0".0

6Didido = Ksin (Lp - +180 0 )cos a 3 seed. do!

S = (. 000097) (1) da
= 0".0

We will now consider the standard error in lunar right ascension. We

will use the quadratic form of equation 2.3, eliminating terms which are

zero. We will assume that do!Q and

ap

are dependent terms while all other non-zero terms are independent.

Therefore, .
a" f + ( , a, dr)a + (1b,_

(daP)a = (da a) +B( p

+ da dp

2

= 400 tan dmcos a . + 100

+ 100 tan 2dcos UQM

- 200 tan dacos aY °

and d ,, = 300tan2d.cosa + 100

31



Sa'a = +(P t +a)sinI cosa;

bA1 a na d = sinI cos a da

= .02676 cosa zd

Max. value = 0". 5 (will be neglected)

A dI = (t + a ) cosI cosa dI

= - .0015059 dI

= 0". 0

SA 1 a'ddm = 0".0
) d.

6A 1 a'
do = -(Plt +a) -sin I sinaUda m

= (-.0015059) (-.02676) (1) (da~ )

Bx bx = psina 3

SB bd p= - sinct dp
dP

a B, b: dI = 0".0aI

db dd. = 0".0

6 Bib,' n n n
d a = pcosa mdam

S-. 00029 da(

= 0".0

Ce = -K sin(L - 0+180O) Cos I sina sind.

-K sin(Lp - g+ 1800) sinI cos dm
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l Cc dl = (+ K sin(I, - O + 1800) sinI sina sin d.

-K sin (4p - + 1800) cos I cosd) dI

= -. 00007 dI

= 0". 0

cl clC da ddm = (- K sin (La, - O + 1800) cos I sin cos d
Sd.

+ K sin (Lp - + 1800) sinI sind.) ddm

= -.00007 dda

= 0".0

da = -Ksin(L~, - 0+ 1800) cosIcos a, sind.

= .00007 da9

= 0".0

Sdi = - K cos (I - + 180 0 ) cosa sindm

a D, d' dl = 0".0

D d dd. = - K cos ( . , + 1800) cosa Cos d.

= .00007 dd.

= 0".0

b D, dil 0
oa ' da = Kcos (Lp a- + 180 0) sinamsind,

= .00007 da

= 0".0
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We will now consider the standard error in lunar declination. We will

use the quadratic form of the similar declination equation 2.3, eliminating

terms which are zero. We will assume dd. and

8 B bid P
ap

are dependent terms.

Therefore, B1b.
(ddapp) = (dd) + ( pB d p)

p+ Blb1' dp dd,

= 400 sin2 o  + 100 sina U

-200 sin am

=300 sin' a

and dd , = 17".3 sina m

Thus, we can see that if stars with near zero declination are used, we

can effectively limit the error in lunar right ascension. Let us examine

the circumstances if we use stars with ± 100 declination and ± 100 right

ascension. The maximum error will then be:

dfp = 300 (.03109) (1) + 100 = 10"5

ddapp = 17".3 (.17633) = 3".1

Thus, we can see that there can be an optimum time for which to obtain

a position. If we consider limiting a1 to values of 3500 right to 0100

and 1700 right to 1900, we will immediately limit the error in declination

to a maximum value of 3". 1. See Appendix E for stars which fall into

this area.
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Next we will consider errors in time. We have defined

LMDT + eq. N = LADT

or
RMDT + eq. N = RADT

We can consider that RMDT is errorless so that the error then occurs

only in eq. N which is dependent upon a and T. So that we may say

dT2 = da 2 + d72 + drd7

or dT = 10'.0 draconic time or 5".0 of are.

We will now consider the standard error of each method in deter-

mination of astronomic position.

For Method 1, we will first present the differential formula for

latitude [16] :

d; = -sec AdZ - cos'tanAdh

- sin4 cosec Z sec d - tan d cot Z dd
cos A

We desire the azimuth to be near 0 or 180 degrees so that

d@ = - dZ - (sin4cosec Z sec d - tan d cot Z) dd

and if Z equals approximately 450, then for a station at or near the equator

d will also equal about 450 so that

. d = - dZ - dd

Therefore, for Method 1, these errors are independent, letting dZ = 7".0,

and considering

(d~a) = (7".0)a + (17".3 sina u )

and d4 = 7".0 to 18".7

Thus, an error in h will have little effect on latitude determination. The

error in latitude determination is basically related to the approximate right
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ascension. The differential for azimuth [161 is

dA = (sin4cosec2 Z - sin d cosec Z cot Z) dh

+ cos 4sin h cosec2 Z dd + cot Z sin A d4

If we consider the zenith distance near 900 we see

dA = (sin4)- sin d) dh + cos Qsin hdd

If the station is near the equator, 4 will be close to 0. Therefore,

dA = - sin ddh + sin hdd

Finally, we will select a pair of stars close to the meridian, preferably

one with 900 north declination and one 900 south. Therefore, dA = 0

for stations near the equator when we combine the pair. If we use only

a sextant, we will have no means of accurately turning the angle between

a star and landmark so that no permanent azimuth could be computed.

The equation for longitude [16] is

X= .p + h - (T + ATn)

where & ,, - the apparent right ascension

h - the hour angle as determined

T - the local time on time keeper

ATn - the chronometer correction

Therefore dX = dapp + dh - dTn - dATn

and dh = -(cosec A sec4dZ + cot A sec d )

- (tan@cosec Z sec d - tan d cot Z sec d) dd
sin A

The error in h may be eliminated by observing at an azimuth of 900 or

2700 and by observing east and west stars in pairs which are symmetrical

to the meridian and at the same altitude. Considering tanQ is zero, the

star pairs will eliminate the declination errors and zenith error terms.
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So that dX = d A,,, - dT - dAT,

d AT, has little effect on the moon for any ordinary chronometer, so that

dX = dct - d T

Therefore d= (dat,,p) + (dT)2 - dT dauap

= 300 tan dm cos2 a , + 100 + 25.0 -

5. 300tan d cos + 100

Limiting da to 450, we see

d = 8".6 to 18".0

For Method 2, we have already stated that the low precision of the

AOT precludes further consideration.

For Method 3, with impersonal operation and high equipment precision,

we can consider that the only errors presented will be systematic in nature,

and these specifically will be the systematic errors in star coordinates

and time. Thus, we can consider that an astronomic position by the use

of this method will yield errors near the equator (declination <100)

d4)= ddM,, = 3". 1 (for optimum time)

dX= dap - dT

d 2 = (d ipp) +(dT) - dT da opp

dX = 9".1

and dA = sin As cot Z d + cos 4 (tan 4 - cos As cot Z) dX

near the equator, we say

dA = (sin As d4P- cos As dX) cotZ

The largest Z we can hope for is 80, and assigning an azimuth of the jth

slit to be 450 , we find:
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dA = 25 dw2 + 25 dXO (considering no dependence)

Therefore, dA > 50".0

For Method 4, the errors are basically the same as for Method 1,

if a panoramic camera is used, and basically the same as for Method 3,

if the zenith camera is used (considering camera operating at optimum

time). See Table 3 for comparison of results.

Method d 4 dX dA

not directly
1 7".0 - 18".7 8".6 - 18".0 obtainableobtainable

not directly
2 > 20". 8 > 20". 8 obtainable

3 3".1 (optimum time) 9".1 > 50".0

4* 3".1 - 18".7 8".6 - 18".0. > 0".0

*Dependent upon horizon or zenith camera type, not including

instrument or observation errors.

Table 3. - Estimated Standard Errors (Station Near the Equator)

2.6 Conclusions

Due to the possibility of limiting the error in star coordinates, it

would seem that an automatic instrument as described in Method 3, would

be the one which would be able to take best advantage of this point.

Missions, of course cannot be scheduled so that these star coordinates

could be utilized. It would be only coincidence if the current short

duration landings occured at the proper time. Thus, the advantages of

an instrument which could determine position automatically after the
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astronauts depart is apparent. During future missions, if the landings are

near the lunar equator, it would seem that the Electronic Zenith Camera/

Zenith photography would take best advantage of the stars with near zero

declination. If landing were far removed from the equator, optimum

times would need to be recomputed due to the increased error in lunar

right ascension, which would result from the higher star declinations.

The format of the current missions, therefore, dictates that we use an

automatic instrument which could take advantage of stars which offer

minimum coordinate errors. The ease of set up and minimum training

required for the astronauts, combined with the inherent accuracy of the

system, show that the Electronic Zenith Camera or similar instrument is

the best possible choice of equipment for the current missions. An

accurate azimuth can only be determined by the use of an horizon camera

at this time.

It must again be stated that the Electronic Zenith Camera has not yet

been manufactured, and could not be included in immediate missions.
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3. DEFLECTION OF THE VERTICAL

Deflections of the vertical relating the normals of the astronomic

and selenographic systems can be obtained by:

(1) Direct astronomical measurement of latitude and longitude

with subsequent comparison with the selenodetic coordinates

extended from a datum by triangulation or traverse. The

results are affected by accumulation of error in the

triangulation or traverse.

(2) Integrating gravity anomalies over large areas surrounding

the point where the deflection is required.

(3) Computing the deflections of the vertical due to topography,

and then refining this system using some model of isostatic

compensation.

(4) Computing the deflections of the vertical from known spherical

harmonics.

The first method depends on an assigned deflection at a datum, thus

is of no use in this paper. The second method requires gravity anomalies

over large areas, and these of course are not available except by obtaining

them through method four. But, method four is of little value in deflection

computations as the harmonics reflect moon-wide rather than local

distribution. The computation of deflections of the vertical requires more

local data near the station. Thus, we will investigate method three, but

will use method four as a check on the magnitude of the deflections.

In addition, the effect of other bodies on the deflection of the vertical

will be calculated.

3.1 Computation of Topographic Deflections of the Vertical

Following the method of Jordan-Eggert [11] adapted for the moon, we

consider the influence of the visible masses in the neighborhood of a station.
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For this, we imagine the terrain around the station divided into compart-

ments by means of concentric circles and radial lines, so that we obtain

a great number of vertical columns between a given reference surface

and the moon's physical surface.

If the components of this deflection in the meridian and the prime

vertical are expressed by A4 and An respectively, then we have

36HP"
S= 3 HP (sin 2s - sinal) loge ra/rl

S-1= 3 H (cosca 2 - cosa 1) log. r /rl
48)T a

where . - The surface layer density

8 - The mean density of the moon

H - Height above reference surface

a - The radius of the moon

a a 2  - The compartment azimuths

ri , ra - The outer and inner radius of compartments

The reference surface which will be used is defined as a moon centered

sphere of radius 1,737.988 kilometers.

We will use the following values for the constants as given in [6].

= 2.670 gm/cm (assumed)*

68 = 3.343 gm/cm3

a = 1,737,988 meters

p = 206,265"

* This figure was obtained from averaging figures in various sources
for a surface layer of 10KM. An error in this figure will produce
a proportional error in the deflections.
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and we obtain

At = 0".0226 H (sina 2 - sinac) log. r2 / rl

An = 0".0226 H(cosa2- cosaj)logra/r,

Note: H in meters

These two values are to be computed for each terrain section around

the point 0, and then the two components of the deflection of the vertical

for the point 0 are equal to the algebraic sum of all values of A or of

A 7 as:

i=1 1=1

We have so far assumed that the whole of the attracting stratum is

in the horizon of the station, which for the moon would be grossly in

error when only a short distance from the station. Therefore, it is

necessary in order to secure the required degree of accuracy to take

into account the curvature of the moon's surface. The effect of this

curvature is to throw the compartment surface below the horizon of the

station. Therefore, when significant, we will use the equation developed

by A. R. Clarke, given in [11]

tan 1/4 a2
SO= 0".0226 H(sina2 - sinai)log. tanl/4 0 x

+ cos 1/2 0 a = cos 1/2 0 1

tan 1/4 6 a
A = - 0".0226 H (cosa 2 - cosa 1) log, tan 1/4 01

+ cos 1/2 2 - cos 1/2 01

in which a is ra reduced to an arc
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O = r 2 (in km) radians
1,737.988

and 01 is r, reduced to an arc

S r (in km) radians
11737.988

Any values for either the constant r2 / ri or for the constant difference

(sina 2 - sinc 1) may be adopted arbitrarily. Advantage is taken of this

fact to adopt such values as would make the computation as simple and

rapid as possible. The values r 2 / rl = 1.19362053 and (sina 2 - sinc1)

0. 25 were adopted. With these values, the deflection equations will be:

A( = .001" h (in meters)

Ar = .001" h (in meters) (the reference line is shifted 900)

As a result then, of this particular selection of arbitrary constants

defining the limits of the compartments, the deflection produced at the

station by the material lying above the reference surface in any compart-

ment is expressed as one second of arc for each kilometer the mean

elevation is above the reference surface.

The arbitrary selection of the adopted values of (sin r2 - sin 1 )

and r 2 , ri was guided by three considerations. First, it was important

to be as rapid as possible in determining the contribution of each section.

The compartments must be small enough to bring the accuracy of the

method within required limits and yet large enough to avoid excessive

amounts of detail in the computation. The compartments should be

compact areas, not long and narrow, in order to facilitate the estimation

of the mean elevation within each compartment.

The radii of the adopted circles separating the compartments are

shown in Table 4. Each group of sixteen compartments (four in each

quadrant) forms a ring. The rings, for convenience of designation,
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were assigned serial numbers commencing with the inner ring, (see

Figure 8).

It was determined that the curvature of the moon had to be taken

into account at ring 46. The outer radii of all succeeding rings were

computed iteratively on the IBM 360-75 computer, (see Appendix A).

It was found by Hayford [8], that on the earth, the computed

topographic deflections are much larger than the actual deflections of the

vertical, in that an influence is in operation which produces an incomplete

counterbalancing of the deflections produced by topography, leaving much

smaller deflections in the same direction. The deflections of the vertical

are due to irregularities in the distribution of the masses composing the

earth. These irregularities may occur either as a result of irregularities

in the surface of the earth (topography), or as a result of irregularities in

the distribution of the densities' beneath the surface.

The distribution of the densities below the surface of the earth is

invisible and largely unknown, but the theory of Isostasy postulates pre-

cisely such a relation between sub-surface densities and surface elevations.

If the earth were composed of homogeneous material, its figure of

equilibrium, under the influence of gravity and its own rotation, would be

an ellipsoid of revolution.

The earth though .is composed of heterogeneous material which varies

considerably in density. If this heterogeneous material were so arranged

that its density at any point simply depended upon the depth of that point

below the surface, or, more accurately, if all the material lying at each

equipotential surface (rotation considered) was of one density, a state of

equilibrium would exist and there would be no tendency toward a rearrange-

ment of masses.

If the heterogeneous material composing the earth were not arranged

in this manner at the outset, the stresses produced by gravity would tend

to bring about such an arrangement, but because the material is not a

perfect fluid, the rearrangement will be imperfect. In the partial
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RING Outer Radius (KM) RING Outer Radius (KM)

1 .0080 36 3.9211
2 .0095 37 4.6803
3 .0114 38 5.5865
4 .0136 39 6.6682
5 .0162 40 7.9592
6 .0194 41 9.5003
7 .0231 42 .11.3398
8 .0276 43 13.5354
9 .0330 44 16.1562

10 .0393 45 19.2844
11 .0470 46 23.0184
12 .0561 47 27.4754
13 .0669 48 32.7956
14 .0799 49 39.1461
15 .0953 50 46.7267
16 .1138 51 55.7757
17 .1358 52 66.5781
18 .1621 53 79.4741
19 .1935 54 94.8707
20 .2310 55 113.2545
21 .2757 56 135.2082
22 .3291 57 161.4304
23 .3928 58 192.7602
24 .4688 59 230.2080
25 .5596 60 274.9951
26 .6680 61 328.6057
27 .7973 62 392.8567
28 .9517 63 469.9958
29 1.1359 64 562.8462
30 1.3558 65 675.0283
31 1.6184 66 811.3203
32 1.9317 67 978.2927
33 2.3057 68 1185.5146
34 2.7522 69 1448.1099
35 3.2850 70 1793.1006

Table 4. - Ring Outer Radius
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FIGURE 8. - Lunar Template

46



rearrangement some stresses will still remain as different positions of

the same horizontal stratum may have somewhat different densities, and

the actual surface of the earth will depart from the ellipsoid of revolution

in the sense that above each region of deficient density there will be a

bulge or bump, and above each region of excessive density there will be a

hollow. The bumps on the earth would be mountains and the hollows

would be ocean floors. The excess material represented by that portion

of the mountains above the reference surface will be compensated for by

a defect of density in the underlying material and vice-versa for the

oceans. This, of course, can be explained by the famous Pratt-Hayford

theory of Isostasy.

If we now consider the moon, we see that the consequences of

hydrostatic theory as stated by Kopal [15] demand that given a sufficiently

long time the material which on a short time-scale may behave as a

solid is bound to get crushed under its own weight to settle to a form of

minimum potential energy, which is a sphere. The departures of the

lunar globe from spherical form permissible for a figure of equilibrium

in the prevailing field of force are indeed small. To this extent, the

moon may seem to be in hydrostatic equilibrium. However, this agree-

ment becomes noticeably worse when we compare the momenta of the

lunar globe with their theoretical values. Finally, by considering the

mechanical ellipticity, we see that its value is so much at variance with

the requirements of hydrostatic equilibrium that the discrepancy must be

considered as real.

Therefore, in spite of the approximate prevalence of hydrostatic

equilibrium in the lunar interior, as attested by the nearly spherical form

of its globe, the moon's motion around its center of gravity reveals the

presence of small but unmistakable departures from this equilibrium.

On the other hand, O'Keefe [19] was able to show by comparison between

calculated Bouguer anomalies and the essentially free air anomalies of

Muller and Sjogren, that the topography of the moon could b3 isostatically
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compensated and that to a rough first approximation the moon is in

isostatic equilibrium. He considers an actual crustal layer on the

moon, for which he states the Pratt-Hayford theory of Isostasy could

be applied.

Under the assumption of Pratt's hypothesis of Isostasy, we will

introduce a surface of compensation at the depth T below the reference

surface. If we denote the changes of Ag and A v due to the changes in

topography by Ato and Ao , then the sums A + A o and A + Ao

are the terms which, when summed, give the total deflection of the

vertical. From Jordan-Eggert [11]:

-3 AeOT " r + T2 + r ),o 4 T A (sina 2 - sinal)log r+ +rl /

E3A TP" r2 + T  + r2

41 em A (co - cosa_)log,
4 On A r + + ra

A er = OH

Therefore:

3 Hp" rz
S+ = 4 (sina 2  sinea) [log. r2

4 e. A ri

\r 1 + T 2 + rl2  /

logloge r2+ 2 +r 2
let + 1 ri + F T2 + r,

let F = a4= 1  l r

log,
ri
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Then for a definite value of T we can set up a table, from which for

every value ri (because r 2 = constant X r) the factor F can be

taken. Then we will have

A4 + A4, = F A

A77 + A7,= FA-q

O'Keefe states [19] that for 20% difference in lunar crust and lunar

mantle density, a depth of compensation of 25 kilometers is in order,

while for 10% difference, a depth of compensation of 50 kilometers is

in order. Further extending these assumptions, calculations for depths

of compensation of 25, 50, 75 and 100 kilometers has been made using

the program and subprogram in Appendix A.

Table 5 gives the various F factors for each ring owing to a

specific assumed depth of compensation.

Calculations have also been made for 125, 250, 500, 1,000 and 1,500

kilometers depth of compensation primarily to obtain a full set of values.

There is direct evidence of excess mass in the maria over what

would be called for by Isostasy. The explanation of this excess mass

which was discovered by Muller and Sjogren of JPL is subject to various

interpretations. O'Keefe [19] states that this excess mass may be due

to the maria being filled with some sort of material which arrived after

the formation of the highland topography. H. C. Urey [21] states that

this mascon effect could be produced by a flat circular slab of chrondritic

material. For instance, Urey calculated that in Mare Imbrium, this

disc would be some 4 kilometers thick and be 670 kilometers in diameter

(mass = 5 X 10a grams).

J. G. Stipe [20] states that these mascons could be caused by meteorites

which have bombarded the moon and have been of necessary size and at

necessary depth to create these mass anomalies.
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RING 25 km 50 km 75 km 100 km

2 0.9997 0.9998 0.9999 0.9999

3 0.9996 0.9998 0.9999 0.9999

4 0.9995 0.9998 0.9998 0.9999

5 0.9994 0.9997 0.9998 0.9999

6 0.9993 0.9996 0.9998 0.9998

7 0.9992 0.9996 0.9997 0.9998

8 0.9990 0.9995 0.9997 0.9998

9 0.9988 0.9994 0.9996 0.9997

10 0.9986 0.9993 0.9995 0.9996

11 0.9983 0.9991 0.9994 0.9996

12 0.9979 0.9990 0.9993 0.9995

13 0.9975 0.9988 0.9992 0.9994

14 0.9971 0.9985 0.9990 0.9993

15 0.9965 0.9983 0.9988 0.9991

16 0.9958 0.9979 0.9986 0.9990

17 0.9950 0.9975 0.9983 0.9988

18 0.9941 0.9970 0.9980 0.9985

19 0.9929 0.9965 0.9976 0.9982

20 0.9915 0.9958 0.9972 0.9979

21 0.9899 0.9949 0.9966 0.9975

22 0.9879 0.9940 0.9960 0.9970

23 0.9856 0.9928 0.9952 0.9964

24 0.9828 0.9914 0.9943 0.9957

25 0.9795 0.9897 0.9932 0.9949

26 0.9755 0.9878 0.9918 0.9939

27 0.9708 0.9854 0.9903 0.9927

28 0.9651 0.9826 0.9884 0.9913

29 0.9584 0.9792 0.9861 0.9896
30 0.9504 0.9752 0.9834 0.9876

31 0.9408 0.9704 0.9802 0.9852

32 0.9294 0.9646 0.9764 0.9823

33 0.9158 0.9578 0.9718 0.9789
34 0.8996 0.9496 0.9664 0.9748

35 0.8804 0.9399 0.9599 0.9699

Table 5. - F Factors
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Table 5. - F Factors (Continued)

RING 25 kman 50 km 75 km 100 km

36 0.8577 0.9283 0.9521 0.9641
37 0.8309 0.9145 0.9429 0.9571
38 0.7994 0.8981 0.9319 0.9489
39 0.7627 0.8787 0.9188 0.9390
40 0.7200 0.8556 0.9032 0.9272
41 0.6712 0.8285 0.8847 0.9133
42 0.6163 0.7965 0.8627 0.8966
43 0.5558 0.7593 0.8368 0.8769
44 0.4908 0.7161 0.8063 0.8535
45 0.4232 0.6669 0.7707 0.8260
46 0.3557 0.6115 0.7293 0.7936
47 0.2910 0.5505 0.6818 0.7559
48 0.2319 0.4852 0.6282 0.7122
49 0.1803 0.4175 0.5687 0.6624
50 0.1370 0.3501 0.5045 0.6065
51 0.1022 0.2858 0.4373 0.5451
52 0.0751 0.2272 0.3695 0.4795
53 0.0545 0.1763 0.3040 0.4118
54 0.0392 0.1338 0.2435 0.3445
55 0.0280 0.0996 0.1902 0.2806
56 0.0199 0.0731 0.1452 0.2225
57 0.0141 0.0530 0.1086 0.1722
58 0.0099 0.0381 0.0800 0.1304
59 0.0070 0.0272 0.0582 0.0969
60 0.0049 6.0193 0.0418 0.0710
61 0.0035 0.0136 0.0299 0.0513
62 0.0024 0.0096 0.0212 0.0368
63 0.0017 0.0067 0.0150 0.0262
64 0.0012 0.0047 0.0105 0.0185
65 0.0008 0.0033 0.0074 0.0130
66 0.0006 0.0023 0.0051 0.0091
67 0.0004 0.0016 0.0035 0.0063
68 0.0003 0.0011 0.0024 0.0043
69 0.0002 0.0007 0.0016 0.0029
70 0.0001 0.0005 0.0011 0.0019
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Wise and Yates [22] state that mascons are produced by mantle plugs

upwelling into giant impact bases punched through the lunar crust, followed

by volcanic filling of the remainder of the crater above the plug.

No matter which theory is accepted, the direct result will be a further

deflection of the vertical. The area where the mascon is located, will

deflect the vertical, proportionately larger than the height of this area

would indicate. The exact numerical increase in the deflection would be

dependent upon the mass distribution as offered in the theories above.

We could consider these mass increases as additional point masses and

compute their effect on the deflections accordingly, or we could select a

station which would minimize their effect.

Let us consider a central station which is quite distant from the major

mass anomalies so that their effect will be insignificant (very low F factor)

in the overall result. For instance, considering any station near the

equator from 200 east longitude westward to 400 west longitude will limit

the contribution of these mass anomalies on the deflection of the vertical

as the station will be greater than 600 kilometers from the outer edge of

these anomalies. We can see for a station greater than 600 kilometers

from a large mass anomaly that the largest F factor is only about . 015

(down to 100 kan compensation depth) and the contribution of the mass

anomalies are then generally negligible on the overall result. For

topographic deflections only, the area of these mass anomalies will

generally fall into one compartment only, and will in turn affect the

result very little. For this reason, I have selected the center of the

crater Landsberg "A" as a starting point. Its coordinates are 3280 57'W

and 00 13'N. This point was also selected due to availability of charts.

Due to the nearly concentric area in terms of height of the center of

Landsberg "A" and the use of a 1:250,000 chart, I have neglected rings

1 to 35, which are approximately the inner 3 kilometers of rings. Rings

36 to 50 were computed using the AMS series topographic lunar map sheet

1 edition 1 of 3 - 64. This map is a modified stereographic projection
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with a point of origin 4,410.10 kilometers from the point of tangency of

the map plan and a selenographic sphere with a radius of 1,737.988

kilometers. The contour interval is 250 meters based on a vertical

datum centered at M'osting "A" at an elevation of 7,000 meters. The

horizontal datum was also based on the center of Mdsting "A" which was

considered to be latitude 30 10' 47" S and longitude 3540 50' 13". Rings

51 to 63 were computed using an edition 1 - AMS sheet 2 topographic

lunar map, scale 1:2,000,000 with the same datum, etc., as above.

Rings 64 to 68 were computed using an edition 2 - AMS sheet 2

topographic lunar map, scale 1:5,000,000 with the same datum, etc.,

as above.

Rings beyond 68 were neglected due to their approach to the lunar

limb; and their coinciding reduction in accuracy of height determination.

Tables 6 and 7 give the heights of each compartment for computations

in the prime vertical and in the meridian respectively.

Table 8 shows the computed deflections for assumed depths of

compensation.
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RING
ZONE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

36 8350 8275 8275 8250 8250 8250 8250 8250 8250 8125 8125 8200 8200 8200 8250 8400 - .475

37 8250 8175 8175 8150 8150 8150 8150 8150 8150 8100 8100 8125 8250 8250 8250 8300 +.150

38 8100 8050 8050 8025 8000 8000 8000 8025 8050 8000 8050 8050 8125 8125 8125 8125 +.400

39 7950 7950 7950 7925 7900 7900 7900 7925 7950 7950 7975 8000 7975 7975 7950 7950 +.325

40 7950 7925 7925 7900 7850 7850 7875 7900 7925 7925 7925 7950 7950 7950 7950 7950 +.350

41 7900 7875 7850 7800 7750 7750 7775 7825 7850 7825 7800 7825 7850 7875 7900 7900 +.300

42 7800 7775 7725 7600 7550 7600 7650 7750 7800 7800 7775 7775 7775 7800 7825 7850 +.950

43 7775 7775 7650 7550 7500 7500 7550 7650 7750 7750 7725 7750 7750 7775 7775 7800 +1.125

44 7800 7750 7625 7500 7400 7375 7500 7600 7700 7625 7575 7550 7625 7750 7775 7775 +.825

45 7800 7650 7550 7350 7300 7250 7300 7450 7600 7550 7450 7425 7500 7625 7700 7750 +.950

46 7775 7650 7450 7275 7150 7125 7125 7300 7500 7350 7300 7350 7350 7525 7525 7750 +.700

47 7850 7600 7350 7200 7050 7025 7025 7200 7250 7125 7100 7150 7375 7550 7650 7750 +.650

48 7850 7600 7300 7100 7000 7000 7000 7100 7100 7050 7050 7150 7500 7550 7600 7700 +.750

49 7800 7625 7250 7000 7000 7000 7000 7000 7000 7000 7000 7100 7500 7550 7650 7700 +.825

50 7950 7625 7500 7150 7000 7000 7000 7000 7000 7000 7000 7250 7500 7500 7650 7750 +.425

51 7500 7500 7600 7300 7000 7000 7000 7000 7000 7000 7000 7000 7000 7500 7500 7500 - .400

52 7600 7800 8000 7500 7250 7000 7000 7000 7000 7000 7000 7000 7250 7250 7250 7400 -2.00

Table 6. - Compartment Heights for Computations in the Meridian



RING

ZONE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

53 7500 7500 7800 7800 7500 7000 6900 6900 6900 6900 6900 6900 7400 7000 7200 7500 - 2.10

54 7600 7600 7500 7500 7500 7100 6900 6900 6900 6900 6900 6900 7000 7000 7000 7400 - 2.50

55 7500 7500 7600 7600 7600 7000 6900 6900 6900 6800 7200 7100 7000 6900 6900' 7200 - 2.60

56 7600 7300 7300 7300 7300 7100 7000 7000 6900 6800 7200 7000 7000 6900 6900 7500 - 1.70

57 7500 7300 7300 7300 7300 7200 7200 7100 6900 6800 6900 6900 6900 6900 6900 7200 - 2.80

58 7300 7300 7300 7300 7300 7300 7300 7200 6900 6800 6900 6900 6900 6900 6900 7100 - 3.00

59 7200 7300 7300 7300 7300 7300 7200 6900 6900 6900 6900 6900 6900 7100 7100 7200 - 1.90

60 7300 7300 7400 7300 7400 7400 7200 7000 6800 6900 6900 6900 6900 6900 7000 7500 - 2.50

61 7800 7400 7600 7400 7400 7100 7100 6700 6800 6900 6900 6900 6900 7000 7200 8000 - 1.90

62 7600 7400 7400 7400 7400 7000 6900 6700 6400 6500 6800 6800 6900 7000 7300 7900 - 2.20

63 7200 7400 7400 7400 7400 7300 6900 6300 6200 6400 6500 6800 7100 7300 8200 7900 - .90

64 7700 7600 7500 7500 7500 7400 6800 5700 6000 6000 6500 6500 .7000 7800 8500 7900 - 1.50

65 7700 7700 7500 7500 7200 7400 7200 6400 5600 5500 5700 6000 6700 7000 7500 7600 - 7.00

66 7700 7700 7600 7400 7000 7200 7300 6000 5400 5500 5500 5800 6200 6200 6600 7500 - 9.20

67 6800 7700 7700 7400 6800 1500 7300 5900 5300 5500 5400 5300 5500 5600 6200 7500 - 12.60

68 8500 8200 8400 7500 7600 7500 7400 6000 5100 5100 5400 5300 4900 5200 6400 7000 - 15.90

= - 1'04".45

Table 6. - (Continued)



RING

ZONE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7

36 8250 8250 8250 8250 8250 8200 8175 8150 8200 8300 8400 8350 8375 8350 8325 8275 + .800

37 8150 8150 8175 8150 8175 8150 8125 8100 8250 8250 8300 8275 8275 8250 8225 8175 + .825

38 8000 8000 8025 8000 8025 8050 8025 8050 8125 8125 8125 8125 8125 8100 8075 8050 + .675

39 7900 7900 7925 7950 7950 7950 7950 7975 7975 7950 7950 7950 7950 7950 7950 7950 + .125

40 7850 7875 7900 7925 7925 7925 7925 7925 7950 7950 7950 7950 7950 7950 7950 7925 + .325

41 7750 7800 7825 7850 7850 7850 7825 7825 7875 7900 7900 7875 7900 7900 7900 7850 + .525

42 7600 7700 7750 7775 7775 7800 7800 7775 7800 7825 7850 7825 7825 7800 7775 7725 + .500

43 7500 7600 7650 7700 7750 7750 7750 7750 7775 7775 7800 7775 7775 7775 7775 7675 + .675

44 7400 7550 7600 7650 7650 7700 7650 7600 7700 7775 7775 7800 7800 7800 7750 7625 + 1.225

45 7300 7350 7450 7550 7550 7600 7550 7475 7600 7725 7750 7775 7800 7800 7700 7550 + 1.875

46 7125 7200 7300 7400 7450 7500 7400 7300 7450 7600 7750 7775 7775 7750 7650 7450 + 2.525

47 7025 7100 7200 7250 7250 7250 7150 7125 7500 7650 7750 7800 7800 7850 7700 7400 +4.10

48 7000 7050 7100 7100 7100 7100 7100 7100 7550 7600 7700 7800 7800 7850 7700 7350 +4.70

49 7000 7000 7000 7000 7000 7000 7000 7050 7550 7650 7700 7750 7750 7800 7650 7325 +5.25

50 7000 7000 7000 7000 7000 7000 7000 7050 7550 7700 7750 7850 7900 7950 7650 7500 +5.80

51 7000 7000 7000 7000 7000 7000 7000 7000 7400 7500 7500 7500 7500 7500 7500 7500 +3.90

52 7100 7000 7000 7000 7000 7000 7000 7000 7250 7300 7400 7500 7600 7600 7700 7800 +4.05

Table 7. - Compartment Heights for Computations in the Prime Vertical



RING
ZONE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 77
53 7100 6900 6900 6900 6900 6900 6900 6900 7000 7300 7500 7500 7500 7500 7500 7700 + 4.10

54 7100 6900 6900 6900 6900 6900 6900 6900 6900 7300 7400 7500 7600 7600 7600 7600 + 4.10

55 7100 6900 6900 6900 6900 6900 6900 7000 6900 7000 7200 7500 7500 7500 7500 7500 + 3.10

56 7100 7000 7000 6900 6900 6900 6900 7000 6900 7000 7500 7500 7600 7600 7500 7300 + 3.20

57 7200 7200 7100 7000 7000 6900 6900 6900 6900 7000 7200 7400 7400 7500 7400 7300 + 1.90

58 7300 7200 7100 7000 6900 6900 6900 6900 7000 7100 7200 7200 7200 7300 7300 7300 + 0.70

59 7300 7100 6900 6900 6900 6900 6900 6900 7000 7100 7200 7200 7200 7200 7300 7300 + 1.70

60 7300 7100 7000 6900 6900 6800 6900 6900 6900 7200 7500 7400 7400 7300 7300 7400 + 2.60

61 7200 7000 6700 6700 6800 6800 6800 6900 7000 7500 8000 7900 8000 7800 7600 7500 + 6.20

62 7100 6800 6700 6600 6500 6400 6500 6700 7100 7300 7900 7700 7700 7600 7500 7400 + 6.70

63 7200 6500 6300 6200 6200 6200 6400 6600 7500 8000 7900 7500 7400 7200 7300 7400 + 8.60

64 7200 6000 5700 5900 6000 6000 6000 6400 7800 8200 7900 7800 7800 7700 7600 7500 + 13.10

65 7300 6700 6400 6200 6100 5600 5700 5800 7100 7600 7600 7600 7700 7700 7700 7600 + 10.80

66 7200 6500 6000 5700 5600 5400 5500 5600 6400 7200 7500 7600 7700 7700 7700 7600 + 11.90

67 7200 6400 5900 5700 5600 5300 5400 5400 5800 6900 7500 7800 8200 8600 8100 7600 +13.60

68 7500 6600 6000 5400. 5300 5100 5300 5300 5600 6700 7000 7800 8200 8500 8100 8000 + 13.60

77 = 2' 17".48

Table 7. - (Continued)



Compensation Depth 7 17

25 km + 2".934 + 10".983

50 km + 3".332 + 20".709

75 km + 2".234 + 27".757

100 km + 0".883 + 33". 123

125 km - 0".547 + 37".447

250 km - 6".118 + 49".548

500 km - 16".792 +1'11".984

1,000 km - 30".184 +1' 38".947

1,500 km - 38".529 +1'47".427

S- 1'04".450 +2' 17".480

Table 8. - Deflections Considering Depths of Compensation

We cannot consider that the value of ) will remain constant down

the depths which we are considering. Thus, as depths increase, the

average density for this surface layer will vary. We consider that the

average density for these depths are as follows in Table 9 (interpolated

from Kaula [12]).
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KM Average Density F 1

25 2.670 1

50 3.000 1.1236

75 3.140 1.1760

100 3.210 1.2022

125 3.250 1.2171

150 3.263 1.2221

250 3.336 1.2494

500 3.343 1.2521

1,000 3.300 1.2360

1,500 3.343 1.2521

Table 9. - Average Surface Density for Selected Depth

The F 1 factor in Table 9 is a deflection multiplier, and its effect

on deflections is given in Table 10.
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Compensation Depth 5 17

25 km + 2".934 + 10".983

50 kan + 4".118 + 23".269

75 kmn + 2".627 + 32".642

100 km + 1".062 + 39".820

125 kmin - 0".666 + 45".447

250 km - 7". 644 +1'01".905

500 kmln - 21".025 +1'30". 131

1,000 lnm - 37".307 +2'02".298

1,500 akm - 48".242 +2'14".509

- 1'04".450 +2'17".480

Table 10. - Deflections Considering Changes in Density for

Changes in Depth of Compensation

The graph in Figure 10 shows the relationship of depth of compensation

to deflections, considering no change in surface density, and considering a

change in the surface density for changes in the depth of compensation.
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The maximum topographic deflections on the moon will most likely

occur at a highland-maria dividing line. For instance, a north-south

deflection was examined at the southern wall of the crater Pitatus at

latitude 31°10 ' S and longitude 3460 10'. With a few assumptions (due

to lack of large scale charts on the area) it was determined that this

deflection was approximately 5 minutes. It is quite possible that other

larger deflections exist, but probably will not greatly exceed this value.

It is interesting to note that the deflections may be greatly minimized by

choosing a station which is surrounded by nearly concentric rings of equal

elevation. This will yield nearly zero deflections for the inner zones.

This ideal station could be at the center of a concentric crater, at the

top of an isolated rise on flat ground, or at a central point of a flat

area. If, of course, a station were selected which did not satisfy this

concentric condition, the inner rings must be considered.

3.2 Computation of Spherical Harmonic Deflections of the Vertical

In order to compare the values obtained by the method of isostatic-

topographic deflections, we will use the formula as given by Dragg [3] to

compute the deflections by the use of spherical harmonics.

CO N 1

= 1 (ANMcosMX + BNmsinM) PNM (sinp) *
ycos P =a ? 1

sin- (  - M + 1) PN +1, m (sing)N- 1

N M
-= • M (ANMsinMX - BNMcosMX) PNM (sin()

Ycos P W 2 m N-1

Dragg [3] neglected the 20, 21, and 40 spherical harmonic terms in

his computation for the earth, but they have been included in this paper.
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I will use the spherical harmonics coefficients given by Blackshear [6],

(see Appendix D). These are CNM and SNm coefficients which must be con-

verted to Am and Bm above.

By definition we see that CNM = Jw and SN = K.NM

For Heiskanen and Moritz [9], we see

A'NM = GM rN JNM

B'NM = -GM rN K

and that from Dragg [3]

Am (N -1) AINM

rN + 2

BNM (N - 1) BNM

N +2
r

Thus we see that in terms of coefficients CM and SNM

N
O= N= L (CN cosM + SsinMA) [(N + 1)PN(sin ).

cos(P = 2 we

sin( - (N -M + 1) 1 2, m (sinp)]

-1 N
1- r i M(CNMsinMX - SNMcosM) PNM(sinP)

Cos( 2 M=a o

This equation was evaluated for the Landsberg "A" station using the

IBM 360-75 computer, the program of which is contained in Appendix B.

The results of this evaluation are

S= - 12'.184

S= 2'13".707

These values fall between the isostatic-topographic results of 250 km

depth of compensation, and the results of topographic compensation only,
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when surface density changes are not considered. These values fall

between the isostatic-topographic results of 250 km and 1,500 km depths

of compensation, when surface density changes are considered.

3.3 Effect of Other Bodies on the Deflection of the Vertical

It is obvious that the attractive effect of the sun and the earth will

affect the deflection of the vertical on the lunar surface. The following

developments refer directly to the earth but apply equally as well to the

sun. Planets also have an effect but for all practical purposes this effect

can be considered insignificant.

Following the method of Jordan- Eggert [11] adapted for the moon, we

see that

3 M, Aa sin Z cos Z
Deflection - r

Mm r

where Me - The mass of the earth

Mm - The mass of the moon

A - The lunar radius

Z - Zenith Distance of the earth

r - Earth-moon distance

and where M = 81.301M.

Aa (1737.63) fand Ar , = 9.27 X 10-8
r (384,400)

Therefore:

Deflection = 2. 253 X 10 - p " sin Z cos Z

= 4". 646912274 sin Z cos Z

= 2".323 sin 2 Z
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For the effect of the sun we will use the formula

3 M A3 sin Z cos Z
Deflection 3

Mn r

Where = 27,158,000
Ms

A ( 1,737.63 )3 1
and 3  = = 1.5728 X 10"

r (149,415,834.4)

Deflection = 0". 026 sin Z cos Z

= 0".013 sin 2 Z

which is negligible in comparison with other uncertainties introduced.

We will now divide the deflection of the vertical caused by the earth's

attraction into a northward and westward directed component. If A is

the azimuth of the earth counted from the north, then we have for the two

components of the deflection of the vertical

(e = 2". 32 sin 2 Z cos A

e = 2". 32 sin 2 Z sin A

These deflections are not constant for a station but vary in accordance

with the change in earth-moon distance and the geometric librations in

latitude and longitude. They also vary with the physical librations but

these are insignificant.

3.4 Conclusions

Due to lack of knowledge of the lunar interior and its isostatic

properties, we cannot, with any degree of confidence, state the magnitude

of the deflections of the vertical at a given point.

For the computation of the topographic deflections, we used lunar

charts with a lunar centered spherical surface as the equip)tential

65



reference surface, and from these the compartment relative heights were

determined. If we consider the effect of an 'offset sphere on this computation,

we can see immediately that the relative heights would change in accordance

with the translation of the sphere's center. For instance, if the center

of the reference sphere were offset toward the earth, the relative heights

of the eastern compartments calculated in this paper would be consider-

ably less, and the 77 deflections, considerably smaller. Thus, we will

need better height determination on the moon, before the topographic

deflections can be considered to be sufficiently accurate. Due to the

relative ease of computation of the spherical harmonic deflections, it may

be best to use them at present instead of the topographic deflections,

especially in areas which have local concentric heights. The computed

deflections could be, of course, corrected for the effect of the earth.

If in the future, Method (1) is employed, and relative deflections

between stations were obtained, we would be in a much better position to

predict the absolute deflections at these same stations using the topo-

graphic method.

The employment of Method (2) would, if extensive enough, yield the

absolute deflections of each station. It is considered that in this method,

lies the best possible results. But, alternately, the most time and effort

would be required over the other methods.

Further work can be accomplished using Method (3). For instance,

Karl Jung in Report No. 41 of The Ohio State University, Institute of

Geodesy, Photogrammetry and Cartography, has given the formulas to

obtain approximate values of the influence of lunar craters on the

deflection. These computations could become particularly useful for

stations offset from the crater centers, as they would yield a rapid

evaluation of the deflection attributed to the inner rings of the template.
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APPENDIX A

F FACTOR COMPUTATION PROGRAM AND ASSOCIATED

MOON CURVATURE SUB- PROGRAM

The main program computes the "F" factor for a given ring, given

the depth of compensation. The associated sub-program computes the

change in outer ring radius due to moon curvature. The main program list

of variables is:

IR Indexing variable for ring number

J Indexing variable and integer compensation depth

Al Inner radius of ring

A2 Outer radius of ring

T Real number compensation depth

FA Compensation depth squared plus outer radius squared

FB Compensation depth squared plus inner radius squared

FC Outer radius plus the square root of FA

FD Inner radius plus the square root of FB

FE FC divided by FD

FF The natural log of FE

FG The outer radius divided by the inner radius

FH The natural log of FG

F The F factor equal to 1 - FF/FH

The sub-program Mooncu uses an iterative procedure employing the

secant method to compute the outer ring radius taking moon curvature into

account.

The sub-program list of variables is:

THETA 1 The inner radius divided by the lunar radius

expressed in radians

THETA 2 The outer radius uncorrected for lunar curvature

expressed in radians

THETB2 An approximate outer radius corrected for

curvature expressed in radians
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T1I THETA 1/4

T2 THETA 2/4

T2B THETB2/4

T21B Tangent of T2B

T21 Tangent of T2

T11 Tangent of T1

T3 T21/T11

T3B T21B/T11

SOC The natural log of T3 minus the cosine of

THETA1 plus the cosine of THETA2 minus

the natural log of the outer radius divided by

the inner radius which is given by definition.

This is considered the first approximation.

ASOC The natural log of T3B minus the cosine of &

THETA1 plus the cosine of THETB2 minus the

natural log of the outer radius divided by the

inner radius which is given by definition.

This is considered the second approximation.

THETC2 By the secant method where:

X1--, f(X,) - X, f(X,,)
X+ f(Xt) - f(X- 1 )

we see

THETC2 THETA2 (ASOC) - THETB2 (SOC)
ASOC - SOC

CSOC The difference between X,. 1 and XI

BSOC Outer radius in kilometers

71



.0001 00 12 J=25,i12,25 .

0002 WRIEl(b,70)J
066- T- C A IO iO L ,X,'8 ASE U O0N 4-iA OkT f4'K ILOMEkff
0004 T=J

.. . 00. -dO-5 .. I R- 1  . .. . . .... . ....

0006 WRITE(6,80)
-0001 . . 0" FORMAT(9x,' ING',1OX,'F FACTOR'-LGX 'GUTER RADIUS )

..

0008 Al=.0080
... -83 A2=1.19 3O62053*A1

0010 88 FA=T**2+A2**2
0011-'- FB=.1*2+41-**2

0012 FC=A2+SQ(FA)
0013 FD=Al+SQRT(FB)
0014 FE=FC/Fl)
. 1 F F=- ..LOG(F-E).
0016 FG=A2/Al
0017 FH=AOG( iFGI
0018 F=1.-FF/FH
0019 IR=IR+1
0020 WRITE(b, 4)IR,I,A2

0022 A1=A2
0023 IF(IR.LT.30) (,0 T 803
0024 CALL M(]O;CU(A, A2)
0025 ........ IF(IR.GT.70 GC TO 12
0026 GO TO 88

0028 STOP
0029 END

0001 SUBROUTINE M O0NGC C(A,aSOCJS
0002 fHeTAI=A1/1737.63

. . -0J03 . . . . . . l H -= 1 .1 3 +t-,2 - -E 0- --- . . . . ..-.--.-T. - .. . .....
0004 THETt2=1.2*ThtTAl

S-0005 .............. IF(TriEA2.(.T..) uGL TC 12

0006 10 T2=TtITA2/4.
0007 128=THETu2/4.
0008 I1=THETAL/4.

. 0011 r -- - - -. i -= r A" I T ---)

0010 121=TAN(T2)
0011 11=IA',[T1)
0012 I 3=T21/Tll
0013 I 13=T21i/l l I
0014 ;]C=ALOG(3)-CCS(HLTA1/2.)+COS(ThEIA2/2.)-0.17699115

.. 00 - -- A* s..A-.TH -- :....... i-A --(T. -C-,T E -I)+C'S TH B /2 . -1769911 -

0016 T1 ETC2=( TIiETA2*ASJC-Tf-ET2. i S9CI/(ASOC-SUC)
0017 CSOC= TIE IC2-THETB2 .

001 SO L=I1737.6 30* TiE TC2
0019 IF(ALS(CSfC.LT.I.E-6) 6C TO 12
0020 THETA2=T ETB2

...-02T t.D7T -- ----- f r I -= t-TtE T ......
0022 UO IL 10
0023 12 RFIURN .
0024 END

Reproduced from
best available copy. . .



APPENDIX B

LEGENDRE POLYNOMIAL COMPUTATION PROGRAM AND

SPHERICAL HARMONIC DEFLECTION PROGRAM

The program computes the Legendre polynomials and the deflections

of the vertical in both the meridian and the prime vertical using the 13th

degree polynomial coefficients as given by Blackshear [6] for the position

of the center of Landsberg "A". The Legendre polynomials were

computed to the fourteenth degree as required and the subscript 15

represents the Oth element [P(15,15) = P(0,0)]. The program list of

variables is:

P(15, 15) An array which contains the Legendre polynomials

C(14,14) An array which contains the Blackshear C

coefficients

S(14, 14) An array which contains the Blackshear S

coefficients

ALAT Latitude of computation point

ALONG Longitude of computation point

U Sine of latitude

T Cosine of latitude

I,J,KA, M Indexing variables

MA,MB,N Indexing variables

PSI Evaluation of a single term of the deflection

in the meridian

APSI Sum of PSI Terms

PNU Evaluation of a single term of the deflection in

the prime vertical

APNU Sum of PNU terms
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PPSI Multiplication of APSI by constants for final

value of deflection in meridian

PPNU Multiplication of APNU by constants for final

value of deflection in prime vertical
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0001 ul ISIU: '1 1,,i) ,CI 1,I 14 14 1 tS4 14)
0002 KEAU~( ,20,-
0003 KEAG(5 ?uJ)
0004 20 FURAI(4IP.11)
0005 ALAI=.jUODi2 l(,.
0006 ALUG=-.j454'40
0007 3 UbS141(ALAT)
0008 i=CUS(ALAT)
0009 00 54 1=1,15
0010 U i 5> J=1,1
0011 P(11J)=G.0
0012 55 LO. I:lE
0013 54 t UNT 1"jut
0014
0015 -f-

OOlb (016 ,' L.= .>*0.2
- .

0017 P(il) = .*U*I
0018 P(2,) =3.*r**A
0019 u( 56 I=1i,14
0020 P(I,1)=( (2*t-1)*UP( 1-1, I)-(I-1 )*P -2, L5)/1
0021 P ( I , T=( - ) I *P( 1-1, -1
0022 KA=I-I
0023 P(i,1)=P(1-2,)+(2*I-1)*I*P( -1,15)
0024 00 57 J=2,KA
0025 (1,J)=P(1-2,J)+(2*i-1)*)( I-L1,J-i)
006 51 ICONTIJuE
0021 . 6bLOA.T1NUE
0028 APNU=O.
0029 APSI=0.
0030 uO b5 N=2,t3
0031 UO b6 M=1,N
0032 MA=/
0033 tB=M
0034 99 PS=I ( (iv ),US (cAL a) +i(:,.1)*SI(t:A4*ALiNG)) *( (.i+[)*P(.,MlI)*U-(

.n-MA+I )*PIN+1,M M)
0035 P U=MA *P (r, Mrb) *(L (N,MS1 tA UNG )- S * t ) LOS (AA*ALUNG )
0036 APSI=APSI+PS]
0031 APi4U=AiNU+PriU
0038 IF(M.IL.14) G! fU h5
0039 He C0l INUE
0040 M=14
0041 MA=0
0042 Mtb=l
0043 GG IGL;
0044 ts L NTINUE
0045 PPS 1= AP,1*3 OO.O/( I * .O OL74532"#3)
0046 PVNU=-AP 0*13000 . /( *-. 017+5 7 3)}

0047 wu flt({,3P)p PSPP.~u

OU48 0H F R;,AffI1 X5 '-,it ) FL :LTI , i N rr E Ei I[: A IS',11A .3/IX, I.HE UFFLELIIIC IN IHE :I IHL V -t AIL IS',F.j///}
0049 -

005U cNO

Reproduced from
best available copy.
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APPENDIX C

PHYSICAL LIB3RATION EQUATIONS

As stated by Kolaczek [14], physical libration is the physical

deviation of the moon's motion from that described by Cassini's Laws.

It can be treated as perturbations on the elements of the lunar orbit

and rotation. Thus, the three components are called libration in

longitude 7, in node a, and in inclination P. The libration in

longitude is a perturbation on the celestial longitude of the moon (can

be considered as a correction to lunar time), libration in node on the

celestial longitude of the node, and libration in inclination on the

inclination I of the moon's equator. These perturbations are small,

never exceeding 2' of arc. They can be expressed as follows:

7 = L ai sin (ng + mg' + pF + qD)

Ir = I7 + Ebi sin(ng +mg' + pF + qD)

p = c, cos (ng + mg' + pF + qD)

Where g and g' are the mean anomaly of the moon and sun respec-

tively (dependent on time).

F = g+w

D = g - g' +w - w'

Where w and w' are the arguments of the perigrees of the moon and

sun (dependent on time), n, m, p, and q and the coefficients a, b, and

c are given in Table 11.
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Symbols Series Argument Multipliers Coefficients in
n m p q Arc Seconds

7 sin 0 0 2 -2 at = + 1.7

0 1 0 0 +91.7

1 -1 0 -1 - 1.2

1 0 0 -2 + 4.2

1 0 0 -1 - 3.5

.1 0 0 0 - 16.9

2 -1 0 -2 + 1.0

2 0 -2 0 +15.3

2 0 0 -2 +10.0

IC sin 0 0 2 -2 bi = - 3.2

0 0 2 0 - 10.6

1 0 -2 0 - 23.8

1 0 0 -2 + 2.5

1 0 0 0 -100.7

p cos 0 0 2 -2 c = - 3.2

0 0 2 0 - 11.0

1 0 -2 0 +23.9

1 0 0 -2 - 1.9

1 0 0 0 - 98.5

Table 11. - Physical Libration Argument

Multipliers and Coefficients

77



APPENDIX D

BLACKSHEAR SPHERICAL HARMONIC COEFFICIENTS

Table 12 below gives the C and S coefficients as determined by

Blackshear in 1969. The coefficients are to the 13th order and degree.

These coefficients are connected with satellite dynamics, with the

potential V written in the form [9]:

Km aN

V = t i- (a) [JNM RN (, X) + KNM M (O,)] )

N M C S
-_.__ o o I .o0 o 5_ 5 .E +0 0 o. _. . .

2 0 - 2.07 0707.51.6 E-._. .

S0 -6.3026014218E-06. .0.........

0 1.937_86_.26850_5 .- 0
5 0 Z-7.4593773641E-06 0.

6 0 -1.0784697393E-06 0.
7 2.4083809155E-05 0.

8 0 -2.6548898776E-05 0.

9 0 -1.5429544143 E-06 0.

10 0 5.6344945025E-05 0.

11 0 -2.4602196863E-05 0.

12 0 3.2989171030E-05 0.
13 0 -5.7723614632E-05 0. .
2 1 -4.425119414 E-07 -4.5725447265E-06

~----- 7-' ------ 4- i= o -A ~'--, --i i ~ -; -:o3 1 2.4370024362E-05 2. 3006376707E-06
4 -5.7323804405E-06 6.8017765237E-06
5 _ 1.36077 4424 5 - 06 -1.2107811323-06.

6 1 -3.6076874485E-07 2.4894914102E-06

7 1 7.825000287 E-206 8.0724555222E-06

8 1 3.9152106632E-06 -1.929137O252E-06
9 1 3.1134712059E- 06 - 5.38803 547E- 06-- -11.------ - ---~-~ - . ..... .. ........ ....... .

10 1 9865666311 4E-07 -4.386 9 90 7 7 44 E--0 6

11 1 -3.01 140536E-6 -1, 1622913969E-05

12 1 -7,4916591513E-06 1.7411943335E- 5

13 1 -1.2121962226E-06 -5.7584594581E-06

Table 12. - Blackshear Coefficients
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2 . 2 42 .24219237E-05 .2.1189.1.33.006E-07
3 2 5.0160008372 E-06 2.031321.3290E-06
4 2 -E9.627577955E-07 - !_. 50536436 72 -06

._ 2 1.1606078394E- *06 -2.238723216_1E..07
6 2 -8.892124400E- 07 -6. 5526 5 342E- 07.

7 62 2 -2.8761796667E 08 .. , 082415 6637E-07 -
8 2 -4.23 55186633E-07 1.0211983026E-07

9 2 -3 . 3 9 95 5 9 2 2 1 E-8 -7.7 -92938936E 08
10 2 4.5069888959E-C9 1.5620275111E-07
11 2 -4.90403328SE-07 _ -1.439948 5811- .0-7
12 2 2., 192_72307E- 7 3..0179012875E-07
13 2 -2.69797.95. E-07 -4.810892 850E-07

3-- 3 1.. .656572029 6E0-.O. -. 7983789217E-07
4 - . 3.3322869043E-0 -f -5.6083560345EC07
5 3_ 3.6 70 7 0 97E - .0 8_ ... , 2 2 24 951 4E -Q 7

6 3 -. 3.0 1 2819002 3 E-07 -I 2337249759.E-0:97
7 3 9.5522189966E-08 1.9247060_92E-07
8 3 -1.277912616 E-07. _ _ -8. 2 _-83E08

9 3 - 1.032237677E-08 7.0820395599E-08

10 3 5.27 03427755E-08 6.1000584740E-09
11 3 -1.6646411362E-38 -5.79687477C9E-08
-12 3 L.7671686398E-08 1.4057627423E-08

13 3 -3 0 0974045425E-09 -6. 5674362878E-08
4 4 -1.0968959476E-07 1.4357110924E-07

5 4 -4.4066369289E-08 - 6 .05464 63E-08
6 4 -9.7799968840 E-09 -9.1993869521 E-09

7 4 3.53 57098930E-O_8 2.5451427030E-08

8 4 49_ 9 6 56751.8O.E- _ 2.422511531 CE-08
9 4 -7.5936533019E- 0____3.1003061468E-09

1... 4 __-1.._2.6. _37_ 7E2_E-.__9 , 40. _4_ 5 45 152_E.-__O

-:1 .5 - .57949.3782-7 E-09__ -_5.-2974433.05E- 10

12 -4 3.808326 -2 614.E- 1 . 3. 79.9 9046248E-Q09
13 4 -6766623733 6 E- ...... 2.5346664 62E.-11

5 5 1. 06497397 44 E-.8_ _ 2 _ 249215.8 5_1. E -0O 8
6 __ 5 1. 1597339233 - 8 - _-_..33 79 1_3_37 2E_. 1C0
7 5 3. 426718502_ E-09 4.1 ,385936533E-09._
8 . 5 -3. 309653216 E -9 3.--.0 . .. , 5 6.23.. ? 156 aE-09
9 5 -5.8960225984E-10 .. 6.8772361 52 E-11

. . - 5 -3. 3256422772E-. 0 1. 90_6101 12.82E--10

11 5 -5.79 908405 5 E1 ._.4 177840 0162E-10
..12 " 5_ . 1 .613_298 4 20-1.- 1.E O .2. 592 0939138E-_ 10.
13 5 -1. 164968164E-10 -1.7697462401E-..0
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6 6 . ~. 0- 2 6 ..32.6E- 9 .... .... - -99 -.

7 6 -1.0459807494E-09 - 3 .0269781767E-10

.. 6 -3.2667897321E- 10 -8.88 97878 59E10

9 6 1.7328254-10 _ 3,2542881147E-1
0

10 6 9.54 2215370E-11- 6.065CC9C402E-11

1 6 4.3477571496E-11 -1.71842 6 - 198E-11

13 6 4.36750696 8 E- 12 - l. 5336991203E-1

7 1- 1.2026816779 E-0. 3.230Q64 5E-1

8 7 1878 b9 E- - 35 9327397E-11

9 7 -1.8023550339E-11 1.0561081783E-10

0 7 - 1.6122513843 E-L - 2. 3325805068E-1I

11]. 7 _ -1.0' 6457808.3_E-_-- ~ ...... _ 4534_"E.I._

12 7 -1,5484033273E-12 -2,3107720838 7E-2

A 1. 4890 .2 -12 - 24 - 4 471 1 -15E. 7 4 ?12

8 8 -. 170011 16994E-1 1 3.0033533379E-11

9 8 -2.858450275E - 2? 7.8834743207E-14

10 8 1 . .. 80 5 E .12 -_6.559761937.8E-12

iL. 8 .. _.0 77719212E-12 8.6181698197E_-_13

12 "8 . 040071918E-.__ 3 4.48911034 5
8 E-13

13 8 -2. 1 168402744 E-14 5.5719251933E-14

9 9 9.6176983415E13 -1.3089 13.5E _ ?-2

10 9 - 1..969688707E-_4. -2.1938879453F 13

.1 .. - .5682.8 8 2504 E 13 3_626E-13_
12 9 -7 0712057255E-14 -3. 553489CO24E-14

2 ---------- -- -
13 9 4.6826469874E-16 -1.9224377776E

- 14

10 10 -3.677400682E-14 4.6557201126E-14

11 .0 -8.1140071909E-1-5 ... _.0112926-706E-1 -

12 19 4.9625158335E-1 5 -1. 362089381E_14

13 10 2.1380269179E-15 1.4722610146E-15

11 11 3.3647966771E-16 -1.1213235338E-15

12 11 7.4957632120E-17 -2.4793959309E-16

13 II -2.0181618293E-16 1.7194186339E-16

..2 12 L - 3 ..627691633. E-1.8. 
552 294 5 10E-18

13 12 -1.8762164620E-18 -8.1189021267E-.8.

135 13 .5540605576Er-
9  -1.70594990IOE19 -
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APPENDIX E

OPTIMUM POSITIONS FOR MINIMUM

STAR COORDINATE ERRORS

Stars which yield the minimum error in transformation were found

to possess the coordinates of:

Lunar Declination = 00

Lunar Right Ascension = 00 or 1800

Thus this point will fall on the ecliptic at the position of the nodes.

Figures 10 and 11 (from [16]) give the positions of these stars in earth

coordinates of right ascension and declination for the time January 0. 5

1971, January 0.5 1972, January 0.5 1973 and January 0.5 1974. The

motion of these points is in direct relationship with the motion of the

lunar nodes.
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